

PyFiberAmp documentation

Getting started:

	Introduction to PyFiberAmp
	A visual example

	Download

	System requirements

	Example

	Fiber data

	Theory basics

	License

	References

Class and function reference:

	Simulation types
	Steady state simulation

	Steady state simulation with Raman scattering

	Dynamic simulation

	Fiber types
	Passive fiber

	Active fiber

	Double-clad fiber

	Yb-doped fiber

	Yb-doped double-clad fiber

	Initial guess

	Boundary conditions

	Simulation result

	Helper functions

Indices and tables

	Index

	Module Index

	Search Page

Introduction to PyFiberAmp

PyFiberAmp is a rate equation simulation library for rare-earth-doped fiber amplifiers and fiber lasers partly based on
the Giles model 1.

With PyFiberAmp you can simulate:

	Both core-pumped and double-clad fiber amplifiers

	Simple continuous-wave, gain-switched and Q-switched fiber lasers

	Unlimited number of pump, signal and ASE channels

	Limited number of Raman channels

	Arbitrarily time-dependent beams from continuous-wave to nanosecond pulses

	Radially varying dopant concentration and excitation

	Automatically calculated Bessel, Gaussian and top-hat mode shapes

Additional benefits include:

	Built-in plotting commands: easy visualization of results

	Python interface: convenient for post-processing the data

	C++, Numba and Pythran backends: fast time-dynamic simulations

	Open source: see what’s happening under the hood

	Free of charge: install on as many computers as you like

Documentation is still in progress and available on Read the Docs [https://pyfiberamp.readthedocs.io/en/latest/index.html].
For practical examples, see the examples folder above. If you have a question, comment or feature request, please open a new issue on
GitHub or contact me at pyfiberamp@gmail.com. If you find PyFiberAmp useful in your own project, I would also very much
like to hear about it.

A visual example

Few-nanosecond pulses propagating in an Yb-doped fiber amplifier are distorted because of gain saturation.
The Gaussian pulse with its exponential leading edge retains its shape better than the square or saw-tooth
pulses.

[image: _images/pulses.gif]

Download

PyFiberAmp is not yet on PyPI. You can either download the code as a zip-file or clone the repository with

git clone git://github.com/Jomiri/pyfiberamp.git

and then install the library by executing

python setup.py install

in the (unzipped) download directory.

System requirements

PyFiberAmp depends on the standard scientific Python packages: Numpy, SciPy and Matplotlib and has been
tested on Windows 7 and Windows 10. It should work on other operating systems as well
provided that Python and the required packages are installed. The Anaconda distribution [https://www.anaconda.com/download/] contains everything you’ll need out of the box.

Even though all of PyFiberAmp’s functionality is available in interpreted Python code, the use of one of the compiled
backends (C++, Numba or Pythran) is recommended for computationally intensive time-dynamic simulations.
The hand-written C++ extension is fastest but has also the strictest system requirements: Windows 7 or 10, Python 3.6 and a fairly modern
CPU with AVX2 instruction support. The Pythran backend probably only works on Linux and requires that pythran [https://pythran.readthedocs.io/en/latest/]
is installed before installing PyFiberAmp. The Numba backend should work on all operating systems provided that Numba [https://numba.pydata.org/]
is available. Please open a new issue if you encounter problems with a backend that should work but does not.

Example

The simple example below demonstrates a core-pumped Yb-doped fiber amplifier. All units are in SI.

from pyfiberamp.steady_state import SteadyStateSimulation
from pyfiberamp.fibers import YbDopedFiber

yb_number_density = 2e25 # m^-3
core_radius = 3e-6 # m
length = 2.5 # m
core_na = 0.12

fiber = YbDopedFiber(length=length,
 core_radius=core_radius,
 ion_number_density=yb_number_density,
 background_loss=0,
 core_na=core_na)
simulation = SteadyStateSimulation()
simulation.fiber = fiber
simulation.add_cw_signal(wl=1035e-9, power=2e-3)
simulation.add_forward_pump(wl=976e-9, power=300e-3)
simulation.add_ase(wl_start=1000e-9, wl_end=1080e-9, n_bins=80)

result = simulation.run(tol=1e-5)
result.plot_amplifier_result()

The script calculates and plots the power evolution in the amplifier and the amplified spontaneous emission (ASE)
spectra. The co-propagating pump is absorbed in the first ~1.2 m of the fiber while the signal experiences gain.
When the pump has been depleted, the signal starts to be reabsorbed. ASE is stronger against the pumping direction.

[image: _images/readme_power_evolution.png]
[image: _images/readme_ase_spectra.png]
For more usage examples, please see the Jupyter notebooks in the examples folder. More examples will be added in the
future.

Fiber data

PyFiberAmp comes with spectroscopic data (effective absorption and emission cross sections) for Yb-doped germanosilicate
fibers 3 and supports importing spectra for other dopants and glass compositions.

Theory basics

For a quick review on the theory, see the pyfiberamp theory.pdf [https://github.com/Jomiri/pyfiberamp/blob/master/pyfiberamp%20theory.pdf] file. Theory on the time-dynamic
simulations is not yet included. A more complete description can be found in the references.

License

PyFiberAmp is licensed under the MIT license. The C++ extension depends on the pybind11 [https://github.com/pybind/pybind11] and Armadillo [http://arma.sourceforge.net/] projects. See the license file
for their respective licenses.

References

	1

	C.R. Giles and E. Desurvire, “Modeling erbium-doped fiber amplifiers,” in Journal of Lightwave Technology, vol. 9, no. 2, pp. 271-283, Feb 1991. doi: 10.1109/50.65886

	2

	R.G. Smith, “Optical Power Handling Capacity of Low Loss Optical Fibers as Determined by Stimulated Raman and Brillouin Scattering,” Appl. Opt. 11, 2489-2494 (1972)

	3

	
	Paschotta, J. Nilsson, A. C. Tropper and D. C. Hanna, “Ytterbium-doped fiber amplifiers,” in IEEE Journal of Quantum Electronics, vol. 33, no. 7, pp. 1049-1056, Jul 1997. doi: 10.1109/3.594865

Simulation types

	Steady state simulation

	Steady state simulation with Raman scattering

	Dynamic simulation

Steady state simulation

	
class SteadyStateSimulation

	SteadyStateSimulation is the main class used for running steady state Giles model simulations without Raman scattering. Only one ion population is supported. The class defines the fiber, boundary conditions and
optical channels used in the simulation.

	
__init__()

	Initialize self. See help(type(self)) for accurate signature.

	
add_cw_signal(wl, power, wl_bandwidth=0, mode_shape_parameters=None, label='')

	Adds a new forward propagating single-frequency CW signal to the simulation.

	Parameters

	
	wl (float) – Wavelength of the signal

	power (float) – Input power of the signal at the beginning of the fiber

	wl_bandwidth (float) – Wavelength bandwidth of the channel. Finite bandwidth means including ASE.

	mode_shape_parameters (dict) – Defines the mode field shape. Allowed key-value pairs:
functional_form -> one of [‘bessel’, ‘gaussian’, ‘tophat’] mode_diameter -> float overlaps -> list of pre-calculated overlaps between the channel and the ion populations

	label (str) – Optional label for the channel

	
add_forward_pump(wl, power, wl_bandwidth=0, mode_shape_parameters=None, label='')

	Adds a new forward propagating single-frequency pump to the simulation.

	Parameters

	
	wl (float) – Wavelength of the signal

	power (float) – Input power of the signal at the beginning of the fiber

	wl_bandwidth (float) – Wavelength bandwidth of the channel. Finite bandwidth means including ASE.

	mode_shape_parameters (dict) – Defines the mode field shape. Allowed key-value pairs:
functional_form -> one of [‘bessel’, ‘gaussian’, ‘tophat’] mode_diameter -> float overlaps -> list of pre-calculated overlaps between the channel and the ion populations

	label (str) – Optional label for the channel

	
add_backward_pump(wl, power, wl_bandwidth=0, mode_shape_parameters=None, label='')

	Adds a new backward propagating single-frequency pump to the simulation.

	Parameters

	
	wl (float) – Wavelength of the signal

	power (float) – Input power of the signal at the beginning of the fiber

	wl_bandwidth (float) – Wavelength bandwidth of the channel. Finite bandwidth means including ASE.

	mode_shape_parameters (dict) – Defines the mode field shape. Allowed key-value pairs:
functional_form -> one of [‘bessel’, ‘gaussian’, ‘tophat’] mode_diameter -> float overlaps -> list of pre-calculated overlaps between the channel and the ion populations

	label (str) – Optional label for the channel

	
add_ase(wl_start, wl_end, n_bins)

	Adds amplified spontaneous emission (ASE) channels.
Using more channels improves accuracy, but incurs a heavier computational cost to the simulation.

	Parameters

	
	wl_start (float) – The shorted wavelength of the ASE band

	wl_end (float) – The longest wavelength of the ASE band

	n_bins (positive int) – The number of simulated ASE channels.

	
run(tol=0.001)

	Runs the simulation, i.e. calculates the steady state of the defined fiber amplifier. ASE or raman
simulations might require higher tolerance than the default value.
It is best to decrease the tolerance until the result no longer changes.

	Parameters

	tol (float) – Target error tolerance of the solver.

	
set_guess_parameters(guess_parameters)

	Overrides the default initial guess parameters.

	Parameters

	guess_parameters (Instance of GuessParameters class) – Parameters used to create the initial guess array

	Example

	

from pyfiberamp import GuessParameters, GainShapes
params = GuessParameters()
params.signal.set_gain_shape(GainShapes.LINEAR)
params.pump.set_gain_db(-20)
simulation.set_guess_parameters(params)

	
set_guess_array(array, force_node_number=None)

	Use an existing array as the initial guess. Typically this array is the result of a previous simulation
with sligthly different parameters. Note that the number of simulated beams/channels must be the same.

	Parameters

	
	array (numpy array) – The initial guess array

	force_node_number (int, optional) – The new number of columns in the resized array.

	
set_number_of_nodes(N)

	Override the default number of nodes used by the solver. The solver will increase the number of nodes if
necessary.

	Parameters

	N (int) – New starting number of nodes used by the solver.

Steady state simulation with Raman scattering

	
class SteadyStateSimulationWithRaman

	SteadyStateSimulationWithRaman is the main class for running Giles model simulations with Raman scattering.
Only one ion population is supported. The class defines the fiber, boundary conditions and optical channels used in
the simulation.

	
__init__()

	Initialize self. See help(type(self)) for accurate signature.

	
add_pulsed_signal(wl, power, f_rep, fwhm_duration, wl_bandwidth=0, mode_shape_parameters=None, label='')

	Adds a new forward propagating single-frequency pulsed signal to the simulation. A pulsed signal has a higher
peak power resulting in stronger nonlinear effects, in particular spontaneous and stimulated Raman scattering.
The pulse shape is assumed to be Gaussian.

	Parameters

	
	wl (float) – Wavelength of the signal

	power (float) – Input power of the signal at the beginning of the fiber

	f_rep (float) – Repetition frequency of the signal

	fwhm_duration (float) – Full-width at half-maximum duration of the Gaussian pulses

	wl_bandwidth (float) – Wavelength bandwidth of the channel. Finite bandwidth means including ASE.

	mode_shape_parameters (dict) – Defines the mode field shape. Allowed key-value pairs:
functional_form -> [‘bessel’, ‘gaussian’, ‘tophat’]
mode_diameter -> float
overlaps -> list of pre-calculated overlaps between the channel and the ion populations

	label (str) – Optional label for the channel

	
add_raman(input_power=1e-14, backward_raman_allowed=True, raman_gain=1e-13)

	Adds Raman channels to the simulation.

	Parameters

	
	backward_raman_allowed (bool, default True) – Determines if only the forward propagating Raman beam is simulated.

	input_power (float, default ~0 W) – Input power of the Raman beam(s)

	raman_gain (float, default 1e-13 m/W) – Raman gain value to be used in the simulation.

	
add_ase(wl_start, wl_end, n_bins)

	Adds amplified spontaneous emission (ASE) channels.
Using more channels improves accuracy, but incurs a heavier computational cost to the simulation.

	Parameters

	
	wl_start (float) – The shorted wavelength of the ASE band

	wl_end (float) – The longest wavelength of the ASE band

	n_bins (positive int) – The number of simulated ASE channels.

	
add_backward_pump(wl, power, wl_bandwidth=0, mode_shape_parameters=None, label='')

	Adds a new backward propagating single-frequency pump to the simulation.

	Parameters

	
	wl (float) – Wavelength of the signal

	power (float) – Input power of the signal at the beginning of the fiber

	wl_bandwidth (float) – Wavelength bandwidth of the channel. Finite bandwidth means including ASE.

	mode_shape_parameters (dict) – Defines the mode field shape. Allowed key-value pairs:
functional_form -> one of [‘bessel’, ‘gaussian’, ‘tophat’] mode_diameter -> float overlaps -> list of pre-calculated overlaps between the channel and the ion populations

	label (str) – Optional label for the channel

	
add_cw_signal(wl, power, wl_bandwidth=0, mode_shape_parameters=None, label='')

	Adds a new forward propagating single-frequency CW signal to the simulation.

	Parameters

	
	wl (float) – Wavelength of the signal

	power (float) – Input power of the signal at the beginning of the fiber

	wl_bandwidth (float) – Wavelength bandwidth of the channel. Finite bandwidth means including ASE.

	mode_shape_parameters (dict) – Defines the mode field shape. Allowed key-value pairs:
functional_form -> one of [‘bessel’, ‘gaussian’, ‘tophat’] mode_diameter -> float overlaps -> list of pre-calculated overlaps between the channel and the ion populations

	label (str) – Optional label for the channel

	
add_forward_pump(wl, power, wl_bandwidth=0, mode_shape_parameters=None, label='')

	Adds a new forward propagating single-frequency pump to the simulation.

	Parameters

	
	wl (float) – Wavelength of the signal

	power (float) – Input power of the signal at the beginning of the fiber

	wl_bandwidth (float) – Wavelength bandwidth of the channel. Finite bandwidth means including ASE.

	mode_shape_parameters (dict) – Defines the mode field shape. Allowed key-value pairs:
functional_form -> one of [‘bessel’, ‘gaussian’, ‘tophat’] mode_diameter -> float overlaps -> list of pre-calculated overlaps between the channel and the ion populations

	label (str) – Optional label for the channel

	
run(tol=0.001)

	Runs the simulation, i.e. calculates the steady state of the defined fiber amplifier. ASE or raman
simulations might require higher tolerance than the default value.
It is best to decrease the tolerance until the result no longer changes.

	Parameters

	tol (float) – Target error tolerance of the solver.

	
set_guess_array(array, force_node_number=None)

	Use an existing array as the initial guess. Typically this array is the result of a previous simulation
with sligthly different parameters. Note that the number of simulated beams/channels must be the same.

	Parameters

	
	array (numpy array) – The initial guess array

	force_node_number (int, optional) – The new number of columns in the resized array.

	
set_guess_parameters(guess_parameters)

	Overrides the default initial guess parameters.

	Parameters

	guess_parameters (Instance of GuessParameters class) – Parameters used to create the initial guess array

	Example

	

from pyfiberamp import GuessParameters, GainShapes
params = GuessParameters()
params.signal.set_gain_shape(GainShapes.LINEAR)
params.pump.set_gain_db(-20)
simulation.set_guess_parameters(params)

	
set_number_of_nodes(N)

	Override the default number of nodes used by the solver. The solver will increase the number of nodes if
necessary.

	Parameters

	N (int) – New starting number of nodes used by the solver.

Dynamic simulation

	
class DynamicSimulation(max_time_steps)

	DynamicSimulation is the interface class used for running fiber amplifier simulations with arbitrarily varying input
powers. It also supports reflective boundary conditions and thus modeling of simple CW, gain-switched or Q-switched
fiber lasers. With constant input powers, the result converges to the steady state simulation result. Setting
multiple ion populations is also supported. The class defines the fiber, boundary conditions and optical channels
used in the simulation.

	
__init__(max_time_steps)

	Initialize self. See help(type(self)) for accurate signature.

	
use_python_backend()

	Sets the simulation to use the slow Python finite difference solver. Using one of the faster solvers instead
is highly recommended.

	
use_cpp_backend()

	Sets the simulation to use the C++ backend if available.

	
use_pythran_backend()

	Sets the simulation to use the pythran backend if available.

	
use_numba_backend()

	Sets the simulation to use the numba backend if available.

	
get_time_coordinates(fiber, z_nodes, dt='auto')

	Returns the time coordinates used in the simulation. Useful for setting time-varying input powers.

	Parameters

	
	fiber (Subclass of FiberBase) – The fiber used in the simulation

	z_nodes (int) – Number of spatial nodes used in the simulation.

	dt (float) – Time step size. The ‘auto’ option uses realistic time step calculated from the Courant condition based on the speed of light in glass and the spatial step size. Larger (and physically unrealistic) time steps can be used to drastically speed up the convergence of steady state simulations.

	Returns

	Time coordinate array

	Return type

	numpy float array

	
add_forward_signal(wl, input_power, wl_bandwidth=0.0, mode_shape_parameters=None, label='', reflection_target='', reflectance=0)

	Adds a new forward-propagating signal to the simulation.

	Parameters

	
	wl (float) – Wavelength of the signal

	input_power (float or numpy array) – Input power of the signal at the beginning of the fiber

	wl_bandwidth (float) – Wavelength bandwidth of the channel. Finite bandwidth means including ASE.

	mode_shape_parameters (dict) – Defines the mode field shape. Allowed key-value pairs:
functional_form -> one of [‘bessel’, ‘gaussian’, ‘tophat’] mode_diameter -> float overlaps -> list of pre-calculated overlaps between the channel and the ion populations

	label (str) – Optional label for the channel (required to receive reflected power from another channel)

	reflection_target (str) – Label of the channel receiving reflection from this channel

	reflectance – Reflectance R [0,1] from this channel to the target channel

	
add_backward_signal(wl, input_power, wl_bandwidth=0.0, mode_shape_parameters=None, label='', reflection_target='', reflectance=0)

	Adds a new backward-propagating signal to the simulation.

	Parameters

	
	wl (float) – Wavelength of the signal

	input_power (float or numpy array) – Input power of the signal at the beginning of the fiber

	wl_bandwidth (float) – Wavelength bandwidth of the channel. Finite bandwidth means including ASE.

	mode_shape_parameters (dict) – Defines the mode field shape. Allowed key-value pairs:
functional_form -> one of [‘bessel’, ‘gaussian’, ‘tophat’] mode_diameter -> float overlaps -> list of pre-calculated overlaps between the channel and the ion populations

	label (str) – Optional label for the channel (required to receive reflected power from another channel)

	reflection_target (str) – Label of the channel receiving reflection from this channel

	reflectance – Reflectance R [0,1] from this channel to the target channel

	
add_forward_pump(wl, input_power, wl_bandwidth=0.0, mode_shape_parameters=None, label='', reflection_target='', reflectance=0)

	Adds a new forward-propagating pump to the simulation.

	Parameters

	
	wl (float) – Wavelength of the signal

	input_power (float or numpy array) – Input power of the signal at the beginning of the fiber

	wl_bandwidth (float) – Wavelength bandwidth of the channel. Finite bandwidth means including ASE.

	mode_shape_parameters (dict) – Defines the mode field shape. Allowed key-value pairs:
functional_form -> one of [‘bessel’, ‘gaussian’, ‘tophat’] mode_diameter -> float overlaps -> list of pre-calculated overlaps between the channel and the ion populations

	label (str) – Optional label for the channel (required to receive reflected power from another channel)

	reflection_target (str) – Label of the channel receiving reflection from this channel

	reflectance – Reflectance R [0,1] from this channel to the target channel

	
add_backward_pump(wl, input_power, wl_bandwidth=0.0, mode_shape_parameters=None, label='', reflection_target='', reflectance=0)

	Adds a new backward-propagating pump to the simulation.

	Parameters

	
	wl (float) – Wavelength of the signal

	input_power (float or numpy array) – Input power of the signal at the beginning of the fiber

	wl_bandwidth (float) – Wavelength bandwidth of the channel. Finite bandwidth means including ASE.

	mode_shape_parameters (dict) – Defines the mode field shape. Allowed key-value pairs:
functional_form -> one of [‘bessel’, ‘gaussian’, ‘tophat’] mode_diameter -> float overlaps -> list of pre-calculated overlaps between the channel and the ion populations

	label (str) – Optional label for the channel (required to receive reflected power from another channel)

	reflection_target (str) – Label of the channel receiving reflection from this channel

	reflectance – Reflectance R [0,1] from this channel to the target channel

	
add_ase(wl_start, wl_end, n_bins)

	Adds amplified spontaneous emission (ASE) channels.
Using more channels improves accuracy, but incurs a heavier computational cost to the simulation.

	Parameters

	
	wl_start (float) – The shorted wavelength of the ASE band

	wl_end (float) – The longest wavelength of the ASE band

	n_bins (positive int) – The number of simulated ASE channels.

	
run(z_nodes, dt='auto', P=None, N2=None, stop_at_steady_state=False, steady_state_tolerance=0.0001, convergence_checking_interval=10000)

	Runs the simulation.

	Parameters

	
	z_nodes (int) – Number of spatial nodes used in the simulation.

	dt (float or str) – Time step size. The ‘auto’ option uses realistic time step calculated from the Courant condition based on the speed of light in glass and the spatial step size. Larger (and physically unrealistic) time steps can be used to drastically speed up the convergence of steady state simulations.

	P (numpy float array) – Pre-existing powers in the fiber, useful when chaining multiple simulations.

	N2 (numpy float array) – Pre-existing upper state excitation in the fiber, useful when chaining multiple simulations.

	stop_at_steady_state (bool) – If this flag parameter is set to True, the simulation stops when the excitation reaches a steady state (does not work if the excitation fluctuates at a specific frequency).

	steady_state_tolerance (float) – Sets the relative change in excitation that is used to detect the steady state.

	convergence_checking_interval (positive int) – If aiming for steady state, the simulation checks convergence always after this number of iterations and prints the average excitation. In truly dynamic simulations, only prints the excitation.

Fiber types

	Passive fiber

	Active fiber

	Double-clad fiber

	Yb-doped fiber

	Yb-doped double-clad fiber

Passive fiber

	
class PassiveFiber(length=0, core_radius=0, background_loss=0, core_na=0)

	PassiveFiber describes a step-index single-mode fiber with no dopant ions. It extends the FiberBase class by
stating that there is no emission or absorption by ions. The only possible gain comes of stimulated Raman
scattering.

	
__init__(length=0, core_radius=0, background_loss=0, core_na=0)

	
	Parameters

	
	length (float) – Fiber length

	core_radius (float) – Core radius

	background_loss (float) – Linear loss of the core (1/m, NOT in dB/m)

	core_na (float) – Numerical aperture of the core

	
get_channel_emission_cross_section(freq, frequency_bandwidth)

	Passive fiber has no gain.

	
get_channel_absorption_cross_section(freq, frequency_bandwidth)

	Passive fiber has no absorption by dopant ions.

	
core_area()

	Returns the core area of the fiber defined as pi*r**2, where r is the core radius.

	Returns

	Core area

	Return type

	float

	
nonlinear_effective_area(freq)

	Returns the nonlinear effective area of the fundamental fiber mode with the given frequency. The method used
is determined by the attribute self.effective_area_type.

	Parameters

	freq (float or numpy float array) – The frequency of the optical signal (Hz).

	Returns

	The nonlinear effective area

	Return type

	Same as argument type.

Active fiber

	
class ActiveFiber(length=0, core_radius=0, background_loss=0, core_na=0, spectroscopy=None, ion_number_density=0)

	ActiveFiber describes a step-index single-mode fiber with active dopant ions. Currently, only uniform doping
in the whole core area is supported. This class extends the FiberBase class by adding spectroscopic data: gain and
emission spectra, upper state lifetime and doping concentration.

	
classmethod from_cross_section_files(length, absorption_cs_file=None, emission_cs_file=None, core_radius=0, upper_state_lifetime=0, ion_number_density=0, background_loss=0, core_na=0)

	
	Parameters

	
	length (float) – Fiber length

	absorption_cs_file (str) – Name of the file containing absorption cross-section data

	emission_cs_file (str) – Name of the file containing emission cross-section data

	core_radius (float) – Core radius

	upper_state_lifetime (float) – Lifetime of the excited state

	ion_number_density (float) – Number density of the dopant ions (1/m^3)

	background_loss (float) – Linear loss of the core (1/m, NOT in dB/m)

	core_na (float) – Numerical aperture of the core

	
__init__(length=0, core_radius=0, background_loss=0, core_na=0, spectroscopy=None, ion_number_density=0)

	
	Parameters

	
	length (float) – Fiber length

	core_radius (float) – Core radius

	background_loss (float) – Linear loss of the core (1/m, NOT in dB/m)

	core_na (float) – Numerical aperture of the core

	spectroscopy (Spectroscopy) – The spectroscopic properties of the fiber.

	ion_number_density (float) – Number density of the dopant ions (1/m^3)

	
saturation_parameter()

	Returns the constant saturation parameter zeta defined in the Giles model.

	
core_area()

	Returns the core area of the fiber defined as pi*r**2, where r is the core radius.

	Returns

	Core area

	Return type

	float

	
nonlinear_effective_area(freq)

	Returns the nonlinear effective area of the fundamental fiber mode with the given frequency. The method used
is determined by the attribute self.effective_area_type.

	Parameters

	freq (float or numpy float array) – The frequency of the optical signal (Hz).

	Returns

	The nonlinear effective area

	Return type

	Same as argument type.

Double-clad fiber

	
class DoubleCladFiber(length=0, core_radius=0, background_loss=0, core_na=0, spectroscopy=None, ion_number_density=0, ratio_of_core_and_cladding_diameters=0)

	DoubleCladFiber extends ActiveFiber and describes a double-clad active fiber with single-mode step-index core.
Flat-top pump distribution in the pump cladding is assumed as well as constant overlap between the pump modes and
the core. All pump beams propagate in the pump cladding.

	
classmethod from_cross_section_files(length=0, absorption_cs_file=None, emission_cs_file=None, core_radius=0, upper_state_lifetime=0, ion_number_density=0, background_loss=0, core_na=0, ratio_of_core_and_cladding_diameters=0)

	
	Parameters

	
	length (float) – Fiber length

	absorption_cs_file (str) – Name of the file containing absorption cross-section data

	emission_cs_file (str) – Name of the file containing emission cross-section data

	core_radius (float) – Core radius

	upper_state_lifetime (float) – Lifetime of the excited state

	ion_number_density (float) – Number density of the dopant ions (1/m^3)

	background_loss (float) – Linear loss of the core (1/m, NOT in dB/m)

	core_na (float) – Numerical aperture of the core

	ratio_of_core_and_cladding_diameters (float) – Core diameter divided by cladding diameter

	
__init__(length=0, core_radius=0, background_loss=0, core_na=0, spectroscopy=None, ion_number_density=0, ratio_of_core_and_cladding_diameters=0)

	
	Parameters

	
	length (float) – Fiber length

	core_radius (float) – Core radius

	background_loss (float) – Linear loss of the core (1/m, NOT in dB/m)

	core_na (float) – Numerical aperture of the core

	spectroscopy (Spectroscopy) – The spectroscopic properties of the fiber.

	ion_number_density (float) – Number density of the dopant ions (1/m^3)

	ratio_of_core_and_cladding_diameters (float) – Core diameter divided by cladding diameter

	
pump_to_core_overlap()

	Returns the overlap between the core and the pump beams, which equals to the ratio of core and cladding
area.

	
pump_cladding_radius()

	Returns the radius of the fiber’s pump cladding.

	
core_area()

	Returns the core area of the fiber defined as pi*r**2, where r is the core radius.

	Returns

	Core area

	Return type

	float

	
nonlinear_effective_area(freq)

	Returns the nonlinear effective area of the fundamental fiber mode with the given frequency. The method used
is determined by the attribute self.effective_area_type.

	Parameters

	freq (float or numpy float array) – The frequency of the optical signal (Hz).

	Returns

	The nonlinear effective area

	Return type

	Same as argument type.

	
saturation_parameter()

	Returns the constant saturation parameter zeta defined in the Giles model.

Yb-doped fiber

	
class YbDopedFiber(length=0, core_radius=0, ion_number_density=0, background_loss=0, core_na=0)

	YbDopedFiber is a convenience class for Yb-doped single-mode fiber that uses the default spectroscopic data
for Yb-ions.

	
__init__(length=0, core_radius=0, ion_number_density=0, background_loss=0, core_na=0)

	
	Parameters

	
	length (float) – Fiber length

	core_radius (float) – Core radius

	ion_number_density (float) – Number density of the dopant ions (1/m^3)

	background_loss (float) – Linear loss of the core (1/m, NOT in dB/m)

	core_na (float) – Numerical aperture of the core

	
core_area()

	Returns the core area of the fiber defined as pi*r**2, where r is the core radius.

	Returns

	Core area

	Return type

	float

	
classmethod from_cross_section_files(length, absorption_cs_file=None, emission_cs_file=None, core_radius=0, upper_state_lifetime=0, ion_number_density=0, background_loss=0, core_na=0)

	
	Parameters

	
	length (float) – Fiber length

	absorption_cs_file (str) – Name of the file containing absorption cross-section data

	emission_cs_file (str) – Name of the file containing emission cross-section data

	core_radius (float) – Core radius

	upper_state_lifetime (float) – Lifetime of the excited state

	ion_number_density (float) – Number density of the dopant ions (1/m^3)

	background_loss (float) – Linear loss of the core (1/m, NOT in dB/m)

	core_na (float) – Numerical aperture of the core

	
nonlinear_effective_area(freq)

	Returns the nonlinear effective area of the fundamental fiber mode with the given frequency. The method used
is determined by the attribute self.effective_area_type.

	Parameters

	freq (float or numpy float array) – The frequency of the optical signal (Hz).

	Returns

	The nonlinear effective area

	Return type

	Same as argument type.

	
saturation_parameter()

	Returns the constant saturation parameter zeta defined in the Giles model.

Yb-doped double-clad fiber

	
class YbDopedDoubleCladFiber(length, core_radius, ion_number_density, background_loss, core_na, ratio_of_core_and_cladding_diameters)

	YbDopedDoubleCladFiber is a convenience class for Yb-doped double-clad fiber that uses the default spectroscopic
data for Yb-ions.

	
__init__(length, core_radius, ion_number_density, background_loss, core_na, ratio_of_core_and_cladding_diameters)

	
	Parameters

	
	length (float) – Fiber length

	core_radius (float) – Core radius

	ion_number_density (float) – Number density of the dopant ions (1/m^3)

	background_loss (float) – Linear loss of the core (1/m, NOT in dB/m)

	core_na (float) – Numerical aperture of the core

	ratio_of_core_and_cladding_diameters (float) – Core diameter divided by cladding diameter

	
core_area()

	Returns the core area of the fiber defined as pi*r**2, where r is the core radius.

	Returns

	Core area

	Return type

	float

	
classmethod from_cross_section_files(length=0, absorption_cs_file=None, emission_cs_file=None, core_radius=0, upper_state_lifetime=0, ion_number_density=0, background_loss=0, core_na=0, ratio_of_core_and_cladding_diameters=0)

	
	Parameters

	
	length (float) – Fiber length

	absorption_cs_file (str) – Name of the file containing absorption cross-section data

	emission_cs_file (str) – Name of the file containing emission cross-section data

	core_radius (float) – Core radius

	upper_state_lifetime (float) – Lifetime of the excited state

	ion_number_density (float) – Number density of the dopant ions (1/m^3)

	background_loss (float) – Linear loss of the core (1/m, NOT in dB/m)

	core_na (float) – Numerical aperture of the core

	ratio_of_core_and_cladding_diameters (float) – Core diameter divided by cladding diameter

	
nonlinear_effective_area(freq)

	Returns the nonlinear effective area of the fundamental fiber mode with the given frequency. The method used
is determined by the attribute self.effective_area_type.

	Parameters

	freq (float or numpy float array) – The frequency of the optical signal (Hz).

	Returns

	The nonlinear effective area

	Return type

	Same as argument type.

	
pump_cladding_radius()

	Returns the radius of the fiber’s pump cladding.

	
pump_to_core_overlap()

	Returns the overlap between the core and the pump beams, which equals to the ratio of core and cladding
area.

	
saturation_parameter()

	Returns the constant saturation parameter zeta defined in the Giles model.

Initial guess

	
class GuessParameters

	GuessParameters defines the guessed gain and functional form of each channel in the simulation.
See also docs for ChannelGuessParameters

	
class ChannelGuessParameters

	ChannelGuessParameters defines the guessed gain and the functional form of the power evolution for
each type of channel (signal, pump, ASE, and Raman). The gain can be defined directly or as the output power.
The gain guess is stored as a function used to calculate the output power.

	
get_gain_shape()

	Getter for the guessed shape of the function.

	Returns

	The guessed functional form

	Return type

	Member of the GainShapes Enum

	
get_output_power(input_power)

	Getter for the guessed output power.

	Returns

	The guessed output power

	Return type

	float

	
set_gain_db(gain_db)

	Set new guessed gain value. Overrides default and previously set gain and output power guesses.

	Parameters

	gain_db (float) – Guessed total gain in dB

	
set_gain_shape(gain_shape)

	Set new guessed shape of the power evolution. Overrides default or previously set values.

	Parameters

	gain_shape (Member of GainShapes Enum) – New guess for the functional form of power evolution

	
set_output_power(output_power)

	Set new guessed output power value. Overrides default and previously set gain and output power guesses.

	Parameters

	output_power (float) – Guessed output power in W

	
class GainShapes

	This Enum defines the possible functional forms used the construct the initial guess.

Boundary conditions

	
class BasicBoundaryConditions(channels)

	This class implements the most basic possible boundary conditions in the Giles model:
all input powers should be those given to the model. Backward progapating beams have their inputs at the end.

Simulation result

Finalizing the interface and the documentation is in progress!

Helper functions

	
load_spectrum(file_name)

	Loads a spectrum file with two columns of floats as numpy array. The first column is wavelength in nanometers;
the second column is some spectroscopic property (mostly cross section) in SI units.

	
load_two_column_file(file_name)

	Loads a file with two columns of floats as a numpy array.

	
wl_bw_to_freq_bw(wl_bw, center_wl)

	Transforms a spectral bandwidth in wavelength centered at wavelength center_wl
into a spectral bandwidth in frequency.

	Parameters

	
	wl_bw – Wavelength bandwidth

	center_wl (float or numpy array of floats) – Central wavelength of the spectrum

	Returns

	Frequency bandwidth

	Return type

	float or numpy array

	
wl_to_freq(wl)

	Transforms (vacuum) wavelength to frequency.

	
freq_to_wl(f)

	Transforms frequency to (vacuum) wavelength.

	
decibel_to_exp(x)

	Transforms a logarithmic quantity from dB/m to 1/m.

	
exp_to_decibel(x)

	Transforms a logarithmic quantity from 1/m to dB/m.

	
to_db(x)

	Transforms a quantity to decibels.

	
to_dbm(power)

	Transforms a power in Watts to dBm.

	
fundamental_mode_mfd_marcuse(wl, r, na)

	Calculates the mode field diameter of the fundamental mode with vacuum wavelength wl using Marcuse’s equation.

	Parameters

	
	wl (float) – Wavelength of the mode

	r (float) – Core radius

	na (float) – Core numerical aperture

	Returns

	Mode field diameter of the fundamental mode

	Return type

	float

	
fundamental_mode_mfd_petermann_2(wl, r, na)

	Calculates the mode field diameter of the fundamental mode with vacuum wavelength wl using the Petermann II
equation.

	Parameters

	
	wl (float) – Wavelength of the mode

	r (float) – Core radius

	na (float) – Core numerical aperture

	Returns

	Mode field diameter of the fundamental mode

	Return type

	float

	
fundamental_mode_radius_petermann_2(wl, r, na)

	Calculates the fundamental mode radius with vacuum wavelength wl using the Petermann II equation.

	Parameters

	
	wl (float) – Wavelength of the mode

	r (float) – Core radius

	na (float) – Core numerical aperture

	Returns

	Mode field radius of the fundamental mode

	Return type

	float

	
fiber_v_parameter(wl, r, na)

	Calculates the V-parameter or normalized frequency of a fiber mode with vacuum wavelength wl.

	Parameters

	
	wl (float) – Wavelength of the mode

	r (float) – Core radius

	na (float) – Core numerical aperture

	Returns

	V-parameter of the mode

	Return type

	float

	
zeta_from_fiber_parameters(core_radius, upper_state_lifetime, ion_number_density)

	Calculates the Giles modes saturation parameter zeta.

	Parameters

	
	core_radius (float) – Core radius of the fiber

	upper_state_lifetime (float) – Lifetime of the excited state

	ion_number_density (float) – Number density of the dopant ions (1/m^3)

	Returns

	Saturation parameter zeta

	Return type

	float

	
gaussian_peak_power(average_power, f_rep, fwhm_duration)

	Calculates the peak power of a Gaussian pulse.

	Parameters

	
	average_power (float) – Average power of the pulse signal

	f_rep (float) – Repetition rate of the pulsed signal

	fwhm_duration (float) – FWHM duration of the Gaussian pulses

	Returns

	Peak power of the pulses

	Return type

	float

	
resample_array(arr, N)

	Changes the width of an array to N columns by using linear interpolation to each row.
:param arr: Array to be resized
:type arr: 2D numpy array
:param N: Number of columns in the resized array
:type N: int
:returns: The resized array with N colums.
:rtype: 2D numpy array

	
linspace_2d(start_vec, end_vec, length)

	Creates a numpy array with given start and end vectors as first and last columns and a total number of columns
specified by “length”. The middle columns are linearly interpolated.

	Parameters

	
	start_vec (1D numpy array) – First column of the generated array

	end_vec (1D numpy array) – Last column of the generated array

	length – Total number of columns in the generated array

	Returns

	Array interpolated between the start and end vectors

	Return type

	2D numpy array

	
expspace_2d(start_vec, end_vec, length)

	Creates a numpy array with given start and end vectors as first and last columns and a total number of columns
specified by “length”. The middle columns are calculated by assuming exponential increase (or decrease).

	Parameters

	
	start_vec (1D numpy array) – First column of the generated array

	end_vec (1D numpy array) – Last column of the generated array

	length – Total number of columns in the generated array

	Returns

	Array interpolated between the start and end vectors

	Return type

	2D numpy array

	
check_signal_reprate(f_rep)

	Emits a warning if the repetition rate of the signal is too low to be accurately modelled due to pulse-to-pulse
gain variations.

	Parameters

	f_rep (float) – Repetition frequency

	
dynamic_time_coordinates(max_time_steps, z_nodes, fiber_length, dt='auto')

	Returns the time coordinates used in the simulation. Useful for setting time-varying input powers.

	Parameters

	
	max_time_steps – Number of time steps in the simulation

	fiber (Subclass of FiberBase) – The fiber used in the simulation

	z_nodes (int) – Number of spatial nodes used in the simulation.

	dt (float) – Time step size. The ‘auto’ option uses realistic time step calculated from the Courant condition based on the speed of light in glass and the spatial step size. Larger (and physically unrealistic) time steps can be used to drastically speed up the convergence of steady state simulations.

	Returns

	Time coordinate array

	Return type

	numpy float array

	
averaged_value_of_finite_bandwidth_spectrum(center_frequency, frequency_bandwidth, spectrum_func)

	Function used to calculate the average gain or absorption cross section of a finite bandwidth channel.

 Python Module Index

 h |
 p

 		 	

 		
 h	

 	
 	
 helper_funcs	
 Contains short utility functions needed by other modules.

 		 	

 		
 p	

 	[image: -]
 	
 pyfiberamp	

 	
 	
 pyfiberamp.dynamic.dynamic_simulation	

 	
 	
 pyfiberamp.fibers.active_fiber	

 	
 	
 pyfiberamp.fibers.double_clad_fiber	

 	
 	
 pyfiberamp.fibers.passive_fiber	

 	
 	
 pyfiberamp.fibers.yb_doped_double_clad_fiber	

 	
 	
 pyfiberamp.fibers.yb_doped_fiber	

 	
 	
 pyfiberamp.helper_funcs	

 	
 	
 pyfiberamp.steady_state.initial_guess	

 	
 	
 pyfiberamp.steady_state.steady_state_boundary_conditions	

 	
 	
 pyfiberamp.steady_state.steady_state_simulation	

 	
 	
 pyfiberamp.steady_state.steady_state_simulation_with_raman	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | L
 | N
 | P
 | R
 | S
 | T
 | U
 | W
 | Y
 | Z

_

 	
 	__init__() (ActiveFiber method)

 	(DoubleCladFiber method)

 	(DynamicSimulation method)

 	(PassiveFiber method)

 	(SteadyStateSimulation method)

 	(SteadyStateSimulationWithRaman method)

 	(YbDopedDoubleCladFiber method)

 	(YbDopedFiber method)

A

 	
 	ActiveFiber (class in pyfiberamp.fibers.active_fiber)

 	add_ase() (DynamicSimulation method)

 	(SteadyStateSimulation method)

 	(SteadyStateSimulationWithRaman method)

 	add_backward_pump() (DynamicSimulation method)

 	(SteadyStateSimulation method)

 	(SteadyStateSimulationWithRaman method)

 	add_backward_signal() (DynamicSimulation method)

 	
 	add_cw_signal() (SteadyStateSimulation method)

 	(SteadyStateSimulationWithRaman method)

 	add_forward_pump() (DynamicSimulation method)

 	(SteadyStateSimulation method)

 	(SteadyStateSimulationWithRaman method)

 	add_forward_signal() (DynamicSimulation method)

 	add_pulsed_signal() (SteadyStateSimulationWithRaman method)

 	add_raman() (SteadyStateSimulationWithRaman method)

 	averaged_value_of_finite_bandwidth_spectrum() (in module pyfiberamp.helper_funcs)

B

 	
 	BasicBoundaryConditions (class in pyfiberamp.steady_state.steady_state_boundary_conditions)

C

 	
 	ChannelGuessParameters (class in pyfiberamp.steady_state.initial_guess)

 	check_signal_reprate() (in module pyfiberamp.helper_funcs)

 	core_area() (ActiveFiber method)

 	(DoubleCladFiber method)

 	(PassiveFiber method)

 	(YbDopedDoubleCladFiber method)

 	(YbDopedFiber method)

D

 	
 	decibel_to_exp() (in module pyfiberamp.helper_funcs)

 	DoubleCladFiber (class in pyfiberamp.fibers.double_clad_fiber)

 	
 	dynamic_time_coordinates() (in module pyfiberamp.helper_funcs)

 	DynamicSimulation (class in pyfiberamp.dynamic.dynamic_simulation)

E

 	
 	exp_to_decibel() (in module pyfiberamp.helper_funcs)

 	
 	expspace_2d() (in module pyfiberamp.helper_funcs)

F

 	
 	fiber_v_parameter() (in module pyfiberamp.helper_funcs)

 	freq_to_wl() (in module pyfiberamp.helper_funcs)

 	from_cross_section_files() (pyfiberamp.fibers.active_fiber.ActiveFiber class method)

 	(pyfiberamp.fibers.double_clad_fiber.DoubleCladFiber class method)

 	(pyfiberamp.fibers.yb_doped_double_clad_fiber.YbDopedDoubleCladFiber class method)

 	(pyfiberamp.fibers.yb_doped_fiber.YbDopedFiber class method)

 	
 	fundamental_mode_mfd_marcuse() (in module pyfiberamp.helper_funcs)

 	fundamental_mode_mfd_petermann_2() (in module pyfiberamp.helper_funcs)

 	fundamental_mode_radius_petermann_2() (in module pyfiberamp.helper_funcs)

G

 	
 	GainShapes (class in pyfiberamp.steady_state.initial_guess)

 	gaussian_peak_power() (in module pyfiberamp.helper_funcs)

 	get_channel_absorption_cross_section() (PassiveFiber method)

 	get_channel_emission_cross_section() (PassiveFiber method)

 	
 	get_gain_shape() (ChannelGuessParameters method)

 	get_output_power() (ChannelGuessParameters method)

 	get_time_coordinates() (DynamicSimulation method)

 	GuessParameters (class in pyfiberamp.steady_state.initial_guess)

H

 	
 	helper_funcs (module)

L

 	
 	linspace_2d() (in module pyfiberamp.helper_funcs)

 	
 	load_spectrum() (in module pyfiberamp.helper_funcs)

 	load_two_column_file() (in module pyfiberamp.helper_funcs)

N

 	
 	nonlinear_effective_area() (ActiveFiber method)

 	(DoubleCladFiber method)

 	(PassiveFiber method)

 	(YbDopedDoubleCladFiber method)

 	(YbDopedFiber method)

P

 	
 	PassiveFiber (class in pyfiberamp.fibers.passive_fiber)

 	pump_cladding_radius() (DoubleCladFiber method)

 	(YbDopedDoubleCladFiber method)

 	pump_to_core_overlap() (DoubleCladFiber method)

 	(YbDopedDoubleCladFiber method)

 	pyfiberamp.dynamic.dynamic_simulation (module)

 	pyfiberamp.fibers.active_fiber (module)

 	pyfiberamp.fibers.double_clad_fiber (module)

 	
 	pyfiberamp.fibers.passive_fiber (module)

 	pyfiberamp.fibers.yb_doped_double_clad_fiber (module)

 	pyfiberamp.fibers.yb_doped_fiber (module)

 	pyfiberamp.helper_funcs (module)

 	pyfiberamp.steady_state.initial_guess (module)

 	pyfiberamp.steady_state.steady_state_boundary_conditions (module)

 	pyfiberamp.steady_state.steady_state_simulation (module)

 	pyfiberamp.steady_state.steady_state_simulation_with_raman (module)

R

 	
 	resample_array() (in module pyfiberamp.helper_funcs)

 	run() (DynamicSimulation method)

 	(SteadyStateSimulation method)

 	(SteadyStateSimulationWithRaman method)

S

 	
 	saturation_parameter() (ActiveFiber method)

 	(DoubleCladFiber method)

 	(YbDopedDoubleCladFiber method)

 	(YbDopedFiber method)

 	set_gain_db() (ChannelGuessParameters method)

 	set_gain_shape() (ChannelGuessParameters method)

 	set_guess_array() (SteadyStateSimulation method)

 	(SteadyStateSimulationWithRaman method)

 	
 	set_guess_parameters() (SteadyStateSimulation method)

 	(SteadyStateSimulationWithRaman method)

 	set_number_of_nodes() (SteadyStateSimulation method)

 	(SteadyStateSimulationWithRaman method)

 	set_output_power() (ChannelGuessParameters method)

 	SteadyStateSimulation (class in pyfiberamp.steady_state.steady_state_simulation)

 	SteadyStateSimulationWithRaman (class in pyfiberamp.steady_state.steady_state_simulation_with_raman)

T

 	
 	to_db() (in module pyfiberamp.helper_funcs)

 	
 	to_dbm() (in module pyfiberamp.helper_funcs)

U

 	
 	use_cpp_backend() (DynamicSimulation method)

 	use_numba_backend() (DynamicSimulation method)

 	
 	use_python_backend() (DynamicSimulation method)

 	use_pythran_backend() (DynamicSimulation method)

W

 	
 	wl_bw_to_freq_bw() (in module pyfiberamp.helper_funcs)

 	
 	wl_to_freq() (in module pyfiberamp.helper_funcs)

Y

 	
 	YbDopedDoubleCladFiber (class in pyfiberamp.fibers.yb_doped_double_clad_fiber)

 	
 	YbDopedFiber (class in pyfiberamp.fibers.yb_doped_fiber)

Z

 	
 	zeta_from_fiber_parameters() (in module pyfiberamp.helper_funcs)

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_images/readme_ase_spectra.png
Power spectral density (dBm/nm)

|
e
S

|
N
[=

|
N
S

|
W
[=

|
w
[

T rorward ase

—— Backward ASE

1
1000 1010

1
1020

1
1030 1040 1050 1060 1070 1080

Wavelength (nm)

_images/readme_power_evolution.png
v v 100

0.30 T —— Forward Signal, 1035.0 nm, output=217.0 mW, gain=20.4 dB
: —— Forward Pump, 976.0 nm, output=0.0 mW, absorption=134.8 dB
—— Forward ASE, power=0.33 mW
—— Backward ASE, power=0.66 mW
0.25F -~ Excited ion fraction =80
_.0.20 0
=
Lo1s
g =40
0.10
-20
0.05
1 1
0.0
9. 15 2.0 2.8

lons at the upper laser level (%)

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 PyFiberAmp documentation

 		
 Introduction to PyFiberAmp

 		
 A visual example

 		
 Download

 		
 System requirements

 		
 Example

 		
 Fiber data

 		
 Theory basics

 		
 License

 		
 References

 		
 Simulation types

 		
 Steady state simulation

 		
 Steady state simulation with Raman scattering

 		
 Dynamic simulation

 		
 Fiber types

 		
 Passive fiber

 		
 Active fiber

 		
 Double-clad fiber

 		
 Yb-doped fiber

 		
 Yb-doped double-clad fiber

 		
 Initial guess

 		
 Boundary conditions

 		
 Simulation result

 		
 Helper functions

_images/pulses.gif
uoI3R}IOX gA |euOIdRI
= o o S o
— o o o o

=
o

3

Position (m)

10r

L L
o [=3 o
< ™M ~

(M) Jamod

